首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5364篇
  免费   511篇
  国内免费   2篇
  2023年   39篇
  2022年   21篇
  2021年   187篇
  2020年   103篇
  2019年   157篇
  2018年   192篇
  2017年   145篇
  2016年   230篇
  2015年   406篇
  2014年   359篇
  2013年   382篇
  2012年   525篇
  2011年   487篇
  2010年   293篇
  2009年   210篇
  2008年   328篇
  2007年   329篇
  2006年   293篇
  2005年   258篇
  2004年   226篇
  2003年   223篇
  2002年   184篇
  2001年   30篇
  2000年   25篇
  1999年   40篇
  1998年   45篇
  1997年   19篇
  1996年   10篇
  1995年   16篇
  1994年   13篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   9篇
  1988年   4篇
  1986年   5篇
  1985年   3篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1977年   4篇
  1973年   5篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   2篇
  1967年   4篇
  1963年   2篇
  1962年   2篇
  1957年   2篇
排序方式: 共有5877条查询结果,搜索用时 15 毫秒
101.
The Eastern European Grey cattle are regarded as the direct descendants of the aurochs (Bos taurus primigenius). Nowadays in Romania, less than 100 Grey animals are being reared and included in the national gene reserve. We examined the genetic diversity among Romanian Grey, Brown, Spotted and Black and White cattle breeds, with a particular focus on Romanian Grey through the use of (i) 11 bovine specific microsatellite markers on 83 animals and (ii) 638 bp length of mitochondrial DNA (mtDNA) D-loop region sequence data from a total of 81 animals. Both microsatellite and mtDNA analysis revealed a high level of genetic variation in the studied breeds. In Romanian Grey a total of 100 alleles were found, the mean number of observed alleles per locus was 9.091; the average observed heterozygosity was 0.940; the Wright’s fixation index (FIS) was negative (-0.189) and indicates that there is no inbreeding and no selection pressure. MtDNA analysis revealed 52 haplotypes with 67 variable sites among the Romanian cattle breeds without any insertion or deletion. Haplotype diversity was 0.980 ± 0.007 and ranged from 0.883 ± 0.056 (Brown) to 0.990 ± 0.028 (Spotted and Black and White). The highest genetic variability of the mtDNA was recorded in the Grey breed, where 18 haplotypes were identified. The most frequent mtDNA D-loop region belonged to T3 haplogroup (80.247%), which was found across all studied breeds, while T2 haplotypes (16.049%) was only found in Grey, Spotted and Black and White genotypes. The T1 haplotypes (3.704%) were found in the Grey and Spotted. The current results contribute to the general knowledge on genetic diversity found in Eastern European cattle breeds and could prove a valuable tool for the conservation efforts of animal genetic resources (FAnGR).  相似文献   
102.

Introduction

As the flows of immigrant populations increase worldwide, their heterogeneity becomes apparent with respect to the differences in the prevalence of chronic physical and mental disease. Multimorbidity provides a new framework in understanding chronic diseases holistically as the consequence of environmental, social, and personal risks that contribute to increased vulnerability to a wide variety of illnesses. There is a lack of studies on multimorbidity among immigrants compared to native-born populations.

Methodology

This nationwide multi-register study in Norway enabled us i) to study the associations between multimorbidity and immigrant origin, accounting for other known risk factors for multimorbidity such as gender, age and socioeconomic levels using logistic regression analyses, and ii) to identify patterns of multimorbidity in Norway for immigrants and Norwegian-born by means of exploratory factor analysis technique.

Results

Multimorbidity rates were lower for immigrants compared to Norwegian-born individuals, with unadjusted odds ratios (OR) and 95% confidence intervals 0.38 (0.37–0.39) for Eastern Europe, 0.58 (0.57–0.59) for Asia, Africa and Latin America, and 0.67 (0.66–0.68) for Western Europe and North America. Results remained significant after adjusting for socioeconomic factors. Similar multimorbidity disease patterns were observed among Norwegian-born and immigrants, in particular between Norwegian-born and those from Western European and North American countries. However, the complexity of patterns that emerged for the other immigrant groups was greater. Despite differences observed in the development of patterns with age, such as ischemic heart disease among immigrant women, we were unable to detect the systematic development of the multimorbidity patterns among immigrants at younger ages.

Conclusions

Our study confirms that migrants have lower multimorbidity levels compared to Norwegian-born. The greater complexity of multimorbidity patterns for some immigrant groups requires further investigation. Health care policies and practice will require a holistic approach for specific population groups in order to meet their health needs and to curb and prevent diseases.  相似文献   
103.
Google Scholar (GS), a commonly used web-based academic search engine, catalogues between 2 and 100 million records of both academic and grey literature (articles not formally published by commercial academic publishers). Google Scholar collates results from across the internet and is free to use. As a result it has received considerable attention as a method for searching for literature, particularly in searches for grey literature, as required by systematic reviews. The reliance on GS as a standalone resource has been greatly debated, however, and its efficacy in grey literature searching has not yet been investigated. Using systematic review case studies from environmental science, we investigated the utility of GS in systematic reviews and in searches for grey literature. Our findings show that GS results contain moderate amounts of grey literature, with the majority found on average at page 80. We also found that, when searched for specifically, the majority of literature identified using Web of Science was also found using GS. However, our findings showed moderate/poor overlap in results when similar search strings were used in Web of Science and GS (10–67%), and that GS missed some important literature in five of six case studies. Furthermore, a general GS search failed to find any grey literature from a case study that involved manual searching of organisations’ websites. If used in systematic reviews for grey literature, we recommend that searches of article titles focus on the first 200 to 300 results. We conclude that whilst Google Scholar can find much grey literature and specific, known studies, it should not be used alone for systematic review searches. Rather, it forms a powerful addition to other traditional search methods. In addition, we advocate the use of tools to transparently document and catalogue GS search results to maintain high levels of transparency and the ability to be updated, critical to systematic reviews.  相似文献   
104.
Until recently, our understanding of the evolution of human growth and development derived from studies of fossil juveniles that employed extant populations for both age determination and comparison. This circular approach has led to considerable debate about the human-like and ape-like affinities of fossil hominins. Teeth are invaluable for understanding maturation as age at death can be directly assessed from dental microstructure, and dental development has been shown to correlate with life history across primates broadly. We employ non-destructive synchrotron imaging to characterize incremental development, molar emergence, and age at death in more than 20 Australopithecus anamensis, Australopithecus africanus, Paranthropus robustus and South African early Homo juveniles. Long-period line periodicities range from at least 6–12 days (possibly 5–13 days), and do not support the hypothesis that australopiths have lower mean values than extant or fossil Homo. Crown formation times of australopith and early Homo postcanine teeth fall below or at the low end of extant human values; Paranthropus robustus dentitions have the shortest formation times. Pliocene and early Pleistocene hominins show remarkable variation, and previous reports of age at death that employ a narrow range of estimated long-period line periodicities, cuspal enamel thicknesses, or initiation ages are likely to be in error. New chronological ages for SK 62 and StW 151 are several months younger than previous histological estimates, while Sts 24 is more than one year older. Extant human standards overestimate age at death in hominins predating Homo sapiens, and should not be applied to other fossil taxa. We urge caution when inferring life history as aspects of dental development in Pliocene and early Pleistocene fossils are distinct from modern humans and African apes, and recent work has challenged the predictive power of primate-wide associations between hominoid first molar emergence and certain life history variables.  相似文献   
105.
Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.  相似文献   
106.
107.
Deciphering the influence of genetics on primary metabolism in plants will provide insights useful for genetic improvement and enhance our fundamental understanding of plant growth and development. Although maize (Zea mays) is a major crop for food and feed worldwide, the genetic architecture of its primary metabolism is largely unknown. Here, we use high-density linkage mapping to dissect large-scale metabolic traits measured in three different tissues (leaf at seedling stage, leaf at reproductive stage, and kernel at 15 d after pollination [DAP]) of a maize recombinant inbred line population. We identify 297 quantitative trait loci (QTLs) with moderate (86.2% of the mapped QTL, R2 = 2.4 to 15%) to major effects (13.8% of the mapped QTL, R2 >15%) for 79 primary metabolites across three tissues. Pairwise epistatic interactions between these identified loci are detected for more than 25.9% metabolites explaining 6.6% of the phenotypic variance on average (ranging between 1.7 and 16.6%), which implies that epistasis may play an important role for some metabolites. Key candidate genes are highlighted and mapped to carbohydrate metabolism, the tricarboxylic acid cycle, and several important amino acid biosynthetic and catabolic pathways, with two of them being further validated using candidate gene association and expression profiling analysis. Our results reveal a metabolite-metabolite-agronomic trait network that, together with the genetic determinants of maize primary metabolism identified herein, promotes efficient utilization of metabolites in maize improvement.  相似文献   
108.
109.
We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号